Unsupervised Word Segmentation for Sesotho Using Adaptor Grammars
نویسنده
چکیده
This paper describes a variety of nonparametric Bayesian models of word segmentation based on Adaptor Grammars that model different aspects of the input and incorporate different kinds of prior knowledge, and applies them to the Bantu language Sesotho. While we find overall word segmentation accuracies lower than these models achieve on English, we also find some interesting differences in which factors contribute to better word segmentation. Specifically, we found little improvement to word segmentation accuracy when we modeled contextual dependencies, while modeling morphological structure did improve segmentation accuracy.
منابع مشابه
Unsupervised phonemic Chinese word segmentation using Adaptor Grammars
Adaptor grammars are a framework for expressing and performing inference over a variety of non-parametric linguistic models. These models currently provide state-of-the-art performance on unsupervised word segmentation from phonemic representations of child-directed unsegmented English utterances. This paper investigates the applicability of these models to unsupervised word segmentation of Man...
متن کاملImproving nonparameteric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars
One of the reasons nonparametric Bayesian inference is attracting attention in computational linguistics is because it provides a principled way of learning the units of generalization together with their probabilities. Adaptor grammars are a framework for defining a variety of hierarchical nonparametric Bayesian models. This paper investigates some of the choices that arise in formulating adap...
متن کاملUsing Adaptor Grammars to Identify Synergies in the Unsupervised Acquisition of Linguistic Structure
Adaptor grammars (Johnson et al., 2007b) are a non-parametric Bayesian extension of Probabilistic Context-Free Grammars (PCFGs) which in effect learn the probabilities of entire subtrees. In practice, this means that an adaptor grammar learns the structures useful for generating the training data as well as their probabilities. We present several different adaptor grammars that learn to segment...
متن کاملOnline Adaptor Grammars with Hybrid Inference
Adaptor grammars are a flexible, powerful formalism for defining nonparametric, unsupervised models of grammar productions. This flexibility comes at the cost of expensive inference. We address the difficulty of inference through an online algorithm which uses a hybrid of Markov chain Monte Carlo and variational inference. We show that this inference strategy improves scalability without sacrif...
متن کاملExtending the Use of Adaptor Grammars for Unsupervised Morphological Segmentation of Unseen Languages
We investigate using Adaptor Grammars for unsupervised morphological segmentation. Using six development languages, we investigate in detail different grammars, the use of morphological knowledge from outside sources, and the use of a cascaded architecture. Using cross-validation on our development languages, we propose a system which is language-independent. We show that it outperforms two sta...
متن کامل